// globalConfig.js
// ============================================================================
// ============================================================================
// Provides global variables used by the entire program.
// Most of this should be configuration.
// Timing multiplier for entire game engine.
let gameSpeed = 1;
// Colors
const BLUE = { r: 0x67, g: 0xd7, b: 0xf0 };
const GREEN = { r: 0xa6, g: 0xe0, b: 0x2c };
const PINK = { r: 0xfa, g: 0x24, b: 0x73 };
const ORANGE = { r: 0xfe, g: 0x95, b: 0x22 };
const allColors = [BLUE, GREEN, PINK, ORANGE];
// Gameplay
const getSpawnDelay = () => {
const spawnDelayMax = 1400;
const spawnDelayMin = 550;
const spawnDelay = spawnDelayMax - state.game.cubeCount * 3.1;
return Math.max(spawnDelay, spawnDelayMin);
};
const doubleStrongEnableScore = 2000;
// Number of cubes that must be smashed before activating a feature.
const slowmoThreshold = 10;
const strongThreshold = 25;
const spinnerThreshold = 25;
// Interaction state
let pointerIsDown = false;
// The last known position of the primary pointer in screen coordinates.`
let pointerScreen = { x: 0, y: 0 };
// Same as `pointerScreen`, but converted to scene coordinates in rAF.
let pointerScene = { x: 0, y: 0 };
// Minimum speed of pointer before "hits" are counted.
const minPointerSpeed = 60;
// The hit speed affects the direction the target post-hit. This number dampens that force.
const hitDampening = 0.1;
// Backboard receives shadows and is the farthest negative Z position of entities.
const backboardZ = -400;
const shadowColor = "#262e36";
// How much air drag is applied to standard objects
const airDrag = 0.022;
const gravity = 0.3;
// Spark config
const sparkColor = "rgba(170,221,255,.9)";
const sparkThickness = 2.2;
const airDragSpark = 0.1;
// Track pointer positions to show trail
const touchTrailColor = "rgba(170,221,255,.62)";
const touchTrailThickness = 7;
const touchPointLife = 120;
const touchPoints = [];
// Size of in-game targets. This affects rendered size and hit area.
const targetRadius = 40;
const targetHitRadius = 50;
const makeTargetGlueColor = (target) => {
// const alpha = (target.health - 1) / (target.maxHealth - 1);
// return `rgba(170,221,255,${alpha.toFixed(3)})`;
return "rgb(170,221,255)";
};
// Size of target fragments
const fragRadius = targetRadius / 3;
// Game canvas element needed in setup.js and interaction.js
const canvas = document.querySelector("#c");
// 3D camera config
// Affects perspective
const cameraDistance = 900;
// Does not affect perspective
const sceneScale = 1;
// Objects that get too close to the camera will be faded out to transparent over this range.
// const cameraFadeStartZ = 0.8*cameraDistance - 6*targetRadius;
const cameraFadeStartZ = 0.45 * cameraDistance;
const cameraFadeEndZ = 0.65 * cameraDistance;
const cameraFadeRange = cameraFadeEndZ - cameraFadeStartZ;
// Globals used to accumlate all vertices/polygons in each frame
const allVertices = [];
const allPolys = [];
const allShadowVertices = [];
const allShadowPolys = [];
// state.js
// ============================================================================
// ============================================================================
///////////
// Enums //
///////////
// Game Modes
const GAME_MODE_RANKED = Symbol("GAME_MODE_RANKED");
const GAME_MODE_CASUAL = Symbol("GAME_MODE_CASUAL");
// Available Menus
const MENU_MAIN = Symbol("MENU_MAIN");
const MENU_PAUSE = Symbol("MENU_PAUSE");
const MENU_SCORE = Symbol("MENU_SCORE");
//////////////////
// Global State //
//////////////////
const state = {
game: {
mode: GAME_MODE_RANKED,
// Run time of current game.
time: 0,
// Player score.
score: 0,
// Total number of cubes smashed in game.
cubeCount: 0,
},
menus: {
// Set to `null` to hide all menus
active: MENU_MAIN,
},
};
////////////////////////////
// Global State Selectors //
////////////////////////////
const isInGame = () => !state.menus.active;
const isMenuVisible = () => !!state.menus.active;
const isCasualGame = () => state.game.mode === GAME_MODE_CASUAL;
const isPaused = () => state.menus.active === MENU_PAUSE;
///////////////////
// Local Storage //
///////////////////
const highScoreKey = "__menja__highScore";
const getHighScore = () => {
const raw = localStorage.getItem(highScoreKey);
return raw ? parseInt(raw, 10) : 0;
};
let _lastHighscore = getHighScore();
const setHighScore = (score) => {
_lastHighscore = getHighScore();
localStorage.setItem(highScoreKey, String(score));
};
const isNewHighScore = () => state.game.score > _lastHighscore;
// utils.js
// ============================================================================
// ============================================================================
const invariant = (condition, message) => {
if (!condition) throw new Error(message);
};
/////////
// DOM //
/////////
const $ = (selector) => document.querySelector(selector);
const handleClick = (element, handler) =>
element.addEventListener("click", handler);
const handlePointerDown = (element, handler) => {
element.addEventListener("touchstart", handler);
element.addEventListener("mousedown", handler);
};
////////////////////////
// Formatting Helpers //
////////////////////////
// Converts a number into a formatted string with thousand separators.
const formatNumber = (num) => num.toLocaleString();
////////////////////
// Math Constants //
////////////////////
const PI = Math.PI;
const TAU = Math.PI * 2;
const ETA = Math.PI * 0.5;
//////////////////
// Math Helpers //
//////////////////
// Clamps a number between min and max values (inclusive)
const clamp = (num, min, max) => Math.min(Math.max(num, min), max);
// Linearly interpolate between numbers a and b by a specific amount.
// mix >= 0 && mix <= 1
const lerp = (a, b, mix) => (b - a) * mix + a;
////////////////////
// Random Helpers //
////////////////////
// Generates a random number between min (inclusive) and max (exclusive)
const random = (min, max) => Math.random() * (max - min) + min;
// Generates a random integer between and possibly including min and max values
const randomInt = (min, max) => ((Math.random() * (max - min + 1)) | 0) + min;
// Returns a random element from an array
const pickOne = (arr) => arr[(Math.random() * arr.length) | 0];
///////////////////
// Color Helpers //
///////////////////
// Converts an { r, g, b } color object to a 6-digit hex code.
const colorToHex = (color) => {
return (
"#" +
(color.r | 0).toString(16).padStart(2, "0") +
(color.g | 0).toString(16).padStart(2, "0") +
(color.b | 0).toString(16).padStart(2, "0")
);
};
// Operates on an { r, g, b } color object.
// Returns string hex code.
// `lightness` must range from 0 to 1. 0 is pure black, 1 is pure white.
const shadeColor = (color, lightness) => {
let other, mix;
if (lightness < 0.5) {
other = 0;
mix = 1 - lightness * 2;
} else {
other = 255;
mix = lightness * 2 - 1;
}
return (
"#" +
(lerp(color.r, other, mix) | 0).toString(16).padStart(2, "0") +
(lerp(color.g, other, mix) | 0).toString(16).padStart(2, "0") +
(lerp(color.b, other, mix) | 0).toString(16).padStart(2, "0")
);
};
////////////////////
// Timing Helpers //
////////////////////
const _allCooldowns = [];
const makeCooldown = (rechargeTime, units = 1) => {
let timeRemaining = 0;
let lastTime = 0;
const initialOptions = { rechargeTime, units };
const updateTime = () => {
const now = state.game.time;
// Reset time remaining if time goes backwards.
if (now < lastTime) {
timeRemaining = 0;
} else {
// update...
timeRemaining -= now - lastTime;
if (timeRemaining < 0) timeRemaining = 0;
}
lastTime = now;
};
const canUse = () => {
updateTime();
return timeRemaining <= rechargeTime * (units - 1);
};
const cooldown = {
canUse,
useIfAble() {
const usable = canUse();
if (usable) timeRemaining += rechargeTime;
return usable;
},
mutate(options) {
if (options.rechargeTime) {
// Apply recharge time delta so change takes effect immediately.
timeRemaining -= rechargeTime - options.rechargeTime;
if (timeRemaining < 0) timeRemaining = 0;
rechargeTime = options.rechargeTime;
}
if (options.units) units = options.units;
},
reset() {
timeRemaining = 0;
lastTime = 0;
this.mutate(initialOptions);
},
};
_allCooldowns.push(cooldown);
return cooldown;
};
const resetAllCooldowns = () =>
_allCooldowns.forEach((cooldown) => cooldown.reset());
const makeSpawner = ({ chance, cooldownPerSpawn, maxSpawns }) => {
const cooldown = makeCooldown(cooldownPerSpawn, maxSpawns);
return {
shouldSpawn() {
return Math.random() <= chance && cooldown.useIfAble();
},
mutate(options) {
if (options.chance) chance = options.chance;
cooldown.mutate({
rechargeTime: options.cooldownPerSpawn,
units: options.maxSpawns,
});
},
};
};
////////////////////
// Vector Helpers //
////////////////////
const normalize = (v) => {
const mag = Math.hypot(v.x, v.y, v.z);
return {
x: v.x / mag,
y: v.y / mag,
z: v.z / mag,
};
};
// Curried math helpers
const add = (a) => (b) => a + b;
// Curried vector helpers
const scaleVector = (scale) => (vector) => {
vector.x *= scale;
vector.y *= scale;
vector.z *= scale;
};
////////////////
// 3D Helpers //
////////////////
// Clone array and all vertices.
function cloneVertices(vertices) {
return vertices.map((v) => ({ x: v.x, y: v.y, z: v.z }));
}
// Copy vertex data from one array into another.
// Arrays must be the same length.
function copyVerticesTo(arr1, arr2) {
const len = arr1.length;
for (let i = 0; i < len; i++) {
const v1 = arr1[i];
const v2 = arr2[i];
v2.x = v1.x;
v2.y = v1.y;
v2.z = v1.z;
}
}
// Compute triangle midpoint.
// Mutates `middle` property of given `poly`.
function computeTriMiddle(poly) {
const v = poly.vertices;
poly.middle.x = (v[0].x + v[1].x + v[2].x) / 3;
poly.middle.y = (v[0].y + v[1].y + v[2].y) / 3;
poly.middle.z = (v[0].z + v[1].z + v[2].z) / 3;
}
// Compute quad midpoint.
// Mutates `middle` property of given `poly`.
function computeQuadMiddle(poly) {
const v = poly.vertices;
poly.middle.x = (v[0].x + v[1].x + v[2].x + v[3].x) / 4;
poly.middle.y = (v[0].y + v[1].y + v[2].y + v[3].y) / 4;
poly.middle.z = (v[0].z + v[1].z + v[2].z + v[3].z) / 4;
}
function computePolyMiddle(poly) {
if (poly.vertices.length === 3) {
computeTriMiddle(poly);
} else {
computeQuadMiddle(poly);
}
}
// Compute distance from any polygon (tri or quad) midpoint to camera.
// Sets `depth` property of given `poly`.
// Also triggers midpoint calculation, which mutates `middle` property of `poly`.
function computePolyDepth(poly) {
computePolyMiddle(poly);
const dX = poly.middle.x;
const dY = poly.middle.y;
const dZ = poly.middle.z - cameraDistance;
poly.depth = Math.hypot(dX, dY, dZ);
}
// Compute normal of any polygon. Uses normalized vector cross product.
// Mutates `normalName` property of given `poly`.
function computePolyNormal(poly, normalName) {
// Store quick refs to vertices
const v1 = poly.vertices[0];
const v2 = poly.vertices[1];
const v3 = poly.vertices[2];
// Calculate difference of vertices, following winding order.
const ax = v1.x - v2.x;
const ay = v1.y - v2.y;
const az = v1.z - v2.z;
const bx = v1.x - v3.x;
const by = v1.y - v3.y;
const bz = v1.z - v3.z;
// Cross product
const nx = ay * bz - az * by;
const ny = az * bx - ax * bz;
const nz = ax * by - ay * bx;
// Compute magnitude of normal and normalize
const mag = Math.hypot(nx, ny, nz);
const polyNormal = poly[normalName];
polyNormal.x = nx / mag;
polyNormal.y = ny / mag;
polyNormal.z = nz / mag;
}
// Apply translation/rotation/scale to all given vertices.
// If `vertices` and `target` are the same array, the vertices will be mutated in place.
// If `vertices` and `target` are different arrays, `vertices` will not be touched, instead the
// transformed values from `vertices` will be written to `target` array.
function transformVertices(
vertices,
target,
tX,
tY,
tZ,
rX,
rY,
rZ,
sX,
sY,
sZ
) {
// Matrix multiplcation constants only need calculated once for all vertices.
const sinX = Math.sin(rX);
const cosX = Math.cos(rX);
const sinY = Math.sin(rY);
const cosY = Math.cos(rY);
const sinZ = Math.sin(rZ);
const cosZ = Math.cos(rZ);
// Using forEach() like map(), but with a (recycled) target array.
vertices.forEach((v, i) => {
const targetVertex = target[i];
// X axis rotation
const x1 = v.x;
const y1 = v.z * sinX + v.y * cosX;
const z1 = v.z * cosX - v.y * sinX;
// Y axis rotation
const x2 = x1 * cosY - z1 * sinY;
const y2 = y1;
const z2 = x1 * sinY + z1 * cosY;
// Z axis rotation
const x3 = x2 * cosZ - y2 * sinZ;
const y3 = x2 * sinZ + y2 * cosZ;
const z3 = z2;
// Scale, Translate, and set the transform.
targetVertex.x = x3 * sX + tX;
targetVertex.y = y3 * sY + tY;
targetVertex.z = z3 * sZ + tZ;
});
}
// 3D projection on a single vertex.
// Directly mutates the vertex.
const projectVertex = (v) => {
const focalLength = cameraDistance * sceneScale;
const depth = focalLength / (cameraDistance - v.z);
v.x = v.x * depth;
v.y = v.y * depth;
};
// 3D projection on a single vertex.
// Mutates a secondary target vertex.
const projectVertexTo = (v, target) => {
const focalLength = cameraDistance * sceneScale;
const depth = focalLength / (cameraDistance - v.z);
target.x = v.x * depth;
target.y = v.y * depth;
};
// PERF.js
// ============================================================================
// ============================================================================
// Dummy no-op functions.
// I use these in a special build for custom performance profiling.
const PERF_START = () => {};
const PERF_END = () => {};
const PERF_UPDATE = () => {};
// 3dModels.js
// ============================================================================
// ============================================================================
// Define models once. The origin is the center of the model.
// A simple cube, 8 vertices, 6 quads.
// Defaults to an edge length of 2 units, can be influenced with `scale`.
function makeCubeModel({ scale = 1 }) {
return {
vertices: [
// top
{ x: -scale, y: -scale, z: scale },
{ x: scale, y: -scale, z: scale },
{ x: scale, y: scale, z: scale },
{ x: -scale, y: scale, z: scale },
// bottom
{ x: -scale, y: -scale, z: -scale },
{ x: scale, y: -scale, z: -scale },
{ x: scale, y: scale, z: -scale },
{ x: -scale, y: scale, z: -scale },
],
polys: [
// z = 1
{ vIndexes: [0, 1, 2, 3] },
// z = -1
{ vIndexes: [7, 6, 5, 4] },
// y = 1
{ vIndexes: [3, 2, 6, 7] },
// y = -1
{ vIndexes: [4, 5, 1, 0] },
// x = 1
{ vIndexes: [5, 6, 2, 1] },
// x = -1
{ vIndexes: [0, 3, 7, 4] },
],
};
}
// Not very optimized - lots of duplicate vertices are generated.
function makeRecursiveCubeModel({ recursionLevel, splitFn, color, scale = 1 }) {
const getScaleAtLevel = (level) => 1 / 3 ** level;
// We can model level 0 manually. It's just a single, centered, cube.
let cubeOrigins = [{ x: 0, y: 0, z: 0 }];
// Recursively replace cubes with smaller cubes.
for (let i = 1; i <= recursionLevel; i++) {
const scale = getScaleAtLevel(i) * 2;
const cubeOrigins2 = [];
cubeOrigins.forEach((origin) => {
cubeOrigins2.push(...splitFn(origin, scale));
});
cubeOrigins = cubeOrigins2;
}
const finalModel = { vertices: [], polys: [] };
// Generate single cube model and scale it.
const cubeModel = makeCubeModel({ scale: 1 });
cubeModel.vertices.forEach(scaleVector(getScaleAtLevel(recursionLevel)));
// Compute the max distance x, y, or z origin values will be.
// Same result as `Math.max(...cubeOrigins.map(o => o.x))`, but much faster.
const maxComponent =
getScaleAtLevel(recursionLevel) * (3 ** recursionLevel - 1);
// Place cube geometry at each origin.
cubeOrigins.forEach((origin, cubeIndex) => {
// To compute occlusion (shading), find origin component with greatest
// magnitude and normalize it relative to `maxComponent`.
const occlusion =
Math.max(Math.abs(origin.x), Math.abs(origin.y), Math.abs(origin.z)) /
maxComponent;
// At lower iterations, occlusion looks better lightened up a bit.
const occlusionLighter =
recursionLevel > 2 ? occlusion : (occlusion + 0.8) / 1.8;
// Clone, translate vertices to origin, and apply scale
finalModel.vertices.push(
...cubeModel.vertices.map((v) => ({
x: (v.x + origin.x) * scale,
y: (v.y + origin.y) * scale,
z: (v.z + origin.z) * scale,
}))
);
// Clone polys, shift referenced vertex indexes, and compute color.
finalModel.polys.push(
...cubeModel.polys.map((poly) => ({
vIndexes: poly.vIndexes.map(add(cubeIndex * 8)),
}))
);
});
return finalModel;
}
// o: Vector3D - Position of cube's origin (center).
// s: Vector3D - Determines size of menger sponge.
function mengerSpongeSplit(o, s) {
return [
// Top
{ x: o.x + s, y: o.y - s, z: o.z + s },
{ x: o.x + s, y: o.y - s, z: o.z + 0 },
{ x: o.x + s, y: o.y - s, z: o.z - s },
{ x: o.x + 0, y: o.y - s, z: o.z + s },
{ x: o.x + 0, y: o.y - s, z: o.z - s },
{ x: o.x - s, y: o.y - s, z: o.z + s },
{ x: o.x - s, y: o.y - s, z: o.z + 0 },
{ x: o.x - s, y: o.y - s, z: o.z - s },
// Bottom
{ x: o.x + s, y: o.y + s, z: o.z + s },
{ x: o.x + s, y: o.y + s, z: o.z + 0 },
{ x: o.x + s, y: o.y + s, z: o.z - s },
{ x: o.x + 0, y: o.y + s, z: o.z + s },
{ x: o.x + 0, y: o.y + s, z: o.z - s },
{ x: o.x - s, y: o.y + s, z: o.z + s },
{ x: o.x - s, y: o.y + s, z: o.z + 0 },
{ x: o.x - s, y: o.y + s, z: o.z - s },
// Middle
{ x: o.x + s, y: o.y + 0, z: o.z + s },
{ x: o.x + s, y: o.y + 0, z: o.z - s },
{ x: o.x - s, y: o.y + 0, z: o.z + s },
{ x: o.x - s, y: o.y + 0, z: o.z - s },
];
}
// Helper to optimize models by merging duplicate vertices within a threshold,
// and removing all polys that share the same vertices.
// Directly mutates the model.
function optimizeModel(model, threshold = 0.0001) {
const { vertices, polys } = model;
const compareVertices = (v1, v2) =>
Math.abs(v1.x - v2.x) < threshold &&
Math.abs(v1.y - v2.y) < threshold &&
Math.abs(v1.z - v2.z) < threshold;
const comparePolys = (p1, p2) => {
const v1 = p1.vIndexes;
const v2 = p2.vIndexes;
return (
(v1[0] === v2[0] ||
v1[0] === v2[1] ||
v1[0] === v2[2] ||
v1[0] === v2[3]) &&
(v1[1] === v2[0] ||
v1[1] === v2[1] ||
v1[1] === v2[2] ||
v1[1] === v2[3]) &&
(v1[2] === v2[0] ||
v1[2] === v2[1] ||
v1[2] === v2[2] ||
v1[2] === v2[3]) &&
(v1[3] === v2[0] || v1[3] === v2[1] || v1[3] === v2[2] || v1[3] === v2[3])
);
};
vertices.forEach((v, i) => {
v.originalIndexes = [i];
});
for (let i = vertices.length - 1; i >= 0; i--) {
for (let ii = i - 1; ii >= 0; ii--) {
const v1 = vertices[i];
const v2 = vertices[ii];
if (compareVertices(v1, v2)) {
vertices.splice(i, 1);
v2.originalIndexes.push(...v1.originalIndexes);
break;
}
}
}
vertices.forEach((v, i) => {
polys.forEach((p) => {
p.vIndexes.forEach((vi, ii, arr) => {
const vo = v.originalIndexes;
if (vo.includes(vi)) {
arr[ii] = i;
}
});
});
});
polys.forEach((p) => {
const vi = p.vIndexes;
p.sum = vi[0] + vi[1] + vi[2] + vi[3];
});
polys.sort((a, b) => b.sum - a.sum);
// Assumptions:
// 1. Each poly will either have no duplicates or 1 duplicate.
// 2. If two polys are equal, they are both hidden (two cubes touching),
// therefore both can be removed.
for (let i = polys.length - 1; i >= 0; i--) {
for (let ii = i - 1; ii >= 0; ii--) {
const p1 = polys[i];
const p2 = polys[ii];
if (p1.sum !== p2.sum) break;
if (comparePolys(p1, p2)) {
polys.splice(i, 1);
polys.splice(ii, 1);
i--;
break;
}
}
}
return model;
}
// Entity.js
// ============================================================================
// ============================================================================
class Entity {
constructor({ model, color, wireframe = false }) {
const vertices = cloneVertices(model.vertices);
const shadowVertices = cloneVertices(model.vertices);
const colorHex = colorToHex(color);
const darkColorHex = shadeColor(color, 0.4);
const polys = model.polys.map((p) => ({
vertices: p.vIndexes.map((vIndex) => vertices[vIndex]),
color: color, // custom rgb color object
wireframe: wireframe,
strokeWidth: wireframe ? 2 : 0, // Set to non-zero value to draw stroke
strokeColor: colorHex, // must be a CSS color string
strokeColorDark: darkColorHex, // must be a CSS color string
depth: 0,
middle: { x: 0, y: 0, z: 0 },
normalWorld: { x: 0, y: 0, z: 0 },
normalCamera: { x: 0, y: 0, z: 0 },
}));
const shadowPolys = model.polys.map((p) => ({
vertices: p.vIndexes.map((vIndex) => shadowVertices[vIndex]),
wireframe: wireframe,
normalWorld: { x: 0, y: 0, z: 0 },
}));
this.projected = {}; // Will store 2D projected data
this.model = model;
this.vertices = vertices;
this.polys = polys;
this.shadowVertices = shadowVertices;
this.shadowPolys = shadowPolys;
this.reset();
}
// Better names: resetEntity, resetTransform, resetEntityTransform
reset() {
this.x = 0;
this.y = 0;
this.z = 0;
this.xD = 0;
this.yD = 0;
this.zD = 0;
this.rotateX = 0;
this.rotateY = 0;
this.rotateZ = 0;
this.rotateXD = 0;
this.rotateYD = 0;
this.rotateZD = 0;
this.scaleX = 1;
this.scaleY = 1;
this.scaleZ = 1;
this.projected.x = 0;
this.projected.y = 0;
}
transform() {
transformVertices(
this.model.vertices,
this.vertices,
this.x,
this.y,
this.z,
this.rotateX,
this.rotateY,
this.rotateZ,
this.scaleX,
this.scaleY,
this.scaleZ
);
copyVerticesTo(this.vertices, this.shadowVertices);
}
// Projects origin point, stored as `projected` property.
project() {
projectVertexTo(this, this.projected);
}
}
// getTarget.js
// ============================================================================
// ============================================================================
// All active targets
const targets = [];
// Pool target instances by color, using a Map.
// keys are color objects, and values are arrays of targets.
// Also pool wireframe instances separately.
const targetPool = new Map(allColors.map((c) => [c, []]));
const targetWireframePool = new Map(allColors.map((c) => [c, []]));
const getTarget = (() => {
const slowmoSpawner = makeSpawner({
chance: 0.5,
cooldownPerSpawn: 10000,
maxSpawns: 1,
});
let doubleStrong = false;
const strongSpawner = makeSpawner({
chance: 0.3,
cooldownPerSpawn: 12000,
maxSpawns: 1,
});
const spinnerSpawner = makeSpawner({
chance: 0.1,
cooldownPerSpawn: 10000,
maxSpawns: 1,
});
// Cached array instances, no need to allocate every time.
const axisOptions = [
["x", "y"],
["y", "z"],
["z", "x"],
];
function getTargetOfStyle(color, wireframe) {
const pool = wireframe ? targetWireframePool : targetPool;
let target = pool.get(color).pop();
if (!target) {
target = new Entity({
model: optimizeModel(
makeRecursiveCubeModel({
recursionLevel: 1,
splitFn: mengerSpongeSplit,
scale: targetRadius,
})
),
color: color,
wireframe: wireframe,
});
// Init any properties that will be used.
// These will not be automatically reset when recycled.
target.color = color;
target.wireframe = wireframe;
// Some properties don't have their final value yet.
// Initialize with any value of the right type.
target.hit = false;
target.maxHealth = 0;
target.health = 0;
}
return target;
}
return function getTarget() {
if (doubleStrong && state.game.score <= doubleStrongEnableScore) {
doubleStrong = false;
// Spawner is reset automatically when game resets.
} else if (!doubleStrong && state.game.score > doubleStrongEnableScore) {
doubleStrong = true;
strongSpawner.mutate({ maxSpawns: 2 });
}
// Target Parameters
// --------------------------------
let color = pickOne([BLUE, GREEN, ORANGE]);
let wireframe = false;
let health = 1;
let maxHealth = 3;
const spinner =
state.game.cubeCount >= spinnerThreshold &&
isInGame() &&
spinnerSpawner.shouldSpawn();
// Target Parameter Overrides
// --------------------------------
if (
state.game.cubeCount >= slowmoThreshold &&
slowmoSpawner.shouldSpawn()
) {
color = BLUE;
wireframe = true;
} else if (
state.game.cubeCount >= strongThreshold &&
strongSpawner.shouldSpawn()
) {
color = PINK;
health = 3;
}
// Target Creation
// --------------------------------
const target = getTargetOfStyle(color, wireframe);
target.hit = false;
target.maxHealth = maxHealth;
target.health = health;
updateTargetHealth(target, 0);
const spinSpeeds = [Math.random() * 0.1 - 0.05, Math.random() * 0.1 - 0.05];
if (spinner) {
// Ends up spinning a random axis
spinSpeeds[0] = -0.25;
spinSpeeds[1] = 0;
target.rotateZ = random(0, TAU);
}
const axes = pickOne(axisOptions);
spinSpeeds.forEach((spinSpeed, i) => {
switch (axes[i]) {
case "x":
target.rotateXD = spinSpeed;
break;
case "y":
target.rotateYD = spinSpeed;
break;
case "z":
target.rotateZD = spinSpeed;
break;
}
});
return target;
};
})();
const updateTargetHealth = (target, healthDelta) => {
target.health += healthDelta;
// Only update stroke on non-wireframe targets.
// Showing "glue" is a temporary attempt to display health. For now, there's
// no reason to have wireframe targets with high health, so we're fine.
if (!target.wireframe) {
const strokeWidth = target.health - 1;
const strokeColor = makeTargetGlueColor(target);
for (let p of target.polys) {
p.strokeWidth = strokeWidth;
p.strokeColor = strokeColor;
}
}
};
const returnTarget = (target) => {
target.reset();
const pool = target.wireframe ? targetWireframePool : targetPool;
pool.get(target.color).push(target);
};
function resetAllTargets() {
while (targets.length) {
returnTarget(targets.pop());
}
}
// createBurst.js
// ============================================================================
// ============================================================================
// Track all active fragments
const frags = [];
// Pool inactive fragments by color, using a Map.
// keys are color objects, and values are arrays of fragments.
// // Also pool wireframe instances separately.
const fragPool = new Map(allColors.map((c) => [c, []]));
const fragWireframePool = new Map(allColors.map((c) => [c, []]));
const createBurst = (() => {
// Precompute some private data to be reused for all bursts.
const basePositions = mengerSpongeSplit({ x: 0, y: 0, z: 0 }, fragRadius * 2);
const positions = cloneVertices(basePositions);
const prevPositions = cloneVertices(basePositions);
const velocities = cloneVertices(basePositions);
const basePositionNormals = basePositions.map(normalize);
const positionNormals = cloneVertices(basePositionNormals);
const fragCount = basePositions.length;
function getFragForTarget(target) {
const pool = target.wireframe ? fragWireframePool : fragPool;
let frag = pool.get(target.color).pop();
if (!frag) {
frag = new Entity({
model: makeCubeModel({ scale: fragRadius }),
color: target.color,
wireframe: target.wireframe,
});
frag.color = target.color;
frag.wireframe = target.wireframe;
}
return frag;
}
return (target, force = 1) => {
// Calculate fragment positions, and what would have been the previous positions
// when still a part of the larger target.
transformVertices(
basePositions,
positions,
target.x,
target.y,
target.z,
target.rotateX,
target.rotateY,
target.rotateZ,
1,
1,
1
);
transformVertices(
basePositions,
prevPositions,
target.x - target.xD,
target.y - target.yD,
target.z - target.zD,
target.rotateX - target.rotateXD,
target.rotateY - target.rotateYD,
target.rotateZ - target.rotateZD,
1,
1,
1
);
// Compute velocity of each fragment, based on previous positions.
// Will write to `velocities` array.
for (let i = 0; i < fragCount; i++) {
const position = positions[i];
const prevPosition = prevPositions[i];
const velocity = velocities[i];
velocity.x = position.x - prevPosition.x;
velocity.y = position.y - prevPosition.y;
velocity.z = position.z - prevPosition.z;
}
// Apply target rotation to normals
transformVertices(
basePositionNormals,
positionNormals,
0,
0,
0,
target.rotateX,
target.rotateY,
target.rotateZ,
1,
1,
1
);
for (let i = 0; i < fragCount; i++) {
const position = positions[i];
const velocity = velocities[i];
const normal = positionNormals[i];
const frag = getFragForTarget(target);
frag.x = position.x;
frag.y = position.y;
frag.z = position.z;
frag.rotateX = target.rotateX;
frag.rotateY = target.rotateY;
frag.rotateZ = target.rotateZ;
const burstSpeed = 2 * force;
const randSpeed = 2 * force;
const rotateScale = 0.015;
frag.xD = velocity.x + normal.x * burstSpeed + Math.random() * randSpeed;
frag.yD = velocity.y + normal.y * burstSpeed + Math.random() * randSpeed;
frag.zD = velocity.z + normal.z * burstSpeed + Math.random() * randSpeed;
frag.rotateXD = frag.xD * rotateScale;
frag.rotateYD = frag.yD * rotateScale;
frag.rotateZD = frag.zD * rotateScale;
frags.push(frag);
}
};
})();
const returnFrag = (frag) => {
frag.reset();
const pool = frag.wireframe ? fragWireframePool : fragPool;
pool.get(frag.color).push(frag);
};
// sparks.js
// ============================================================================
// ============================================================================
const sparks = [];
const sparkPool = [];
function addSpark(x, y, xD, yD) {
const spark = sparkPool.pop() || {};
spark.x = x + xD * 0.5;
spark.y = y + yD * 0.5;
spark.xD = xD;
spark.yD = yD;
spark.life = random(200, 300);
spark.maxLife = spark.life;
sparks.push(spark);
return spark;
}
// Spherical spark burst
function sparkBurst(x, y, count, maxSpeed) {
const angleInc = TAU / count;
for (let i = 0; i < count; i++) {
const angle = i * angleInc + angleInc * Math.random();
const speed = (1 - Math.random() ** 3) * maxSpeed;
addSpark(x, y, Math.sin(angle) * speed, Math.cos(angle) * speed);
}
}
// Make a target "leak" sparks from all vertices.
// This is used to create the effect of target glue "shedding".
let glueShedVertices;
function glueShedSparks(target) {
if (!glueShedVertices) {
glueShedVertices = cloneVertices(target.vertices);
} else {
copyVerticesTo(target.vertices, glueShedVertices);
}
glueShedVertices.forEach((v) => {
if (Math.random() < 0.4) {
projectVertex(v);
addSpark(v.x, v.y, random(-12, 12), random(-12, 12));
}
});
}
function returnSpark(spark) {
sparkPool.push(spark);
}
// hud.js
// ============================================================================
// ============================================================================
const hudContainerNode = $(".hud");
function setHudVisibility(visible) {
if (visible) {
hudContainerNode.style.display = "block";
} else {
hudContainerNode.style.display = "none";
}
}
///////////
// Score //
///////////
const scoreNode = $(".score-lbl");
const cubeCountNode = $(".cube-count-lbl");
function renderScoreHud() {
if (isCasualGame()) {
scoreNode.style.display = "none";
cubeCountNode.style.opacity = 1;
} else {
scoreNode.innerText = `SCORE: ${state.game.score}`;
scoreNode.style.display = "block";
cubeCountNode.style.opacity = 0.65;
}
cubeCountNode.innerText = `CUBES SMASHED: ${state.game.cubeCount}`;
}
renderScoreHud();
//////////////////
// Pause Button //
//////////////////
handlePointerDown($(".pause-btn"), () => pauseGame());
////////////////////
// Slow-Mo Status //
////////////////////
const slowmoNode = $(".slowmo");
const slowmoBarNode = $(".slowmo__bar");
function renderSlowmoStatus(percentRemaining) {
slowmoNode.style.opacity = percentRemaining === 0 ? 0 : 1;
slowmoBarNode.style.transform = `scaleX(${percentRemaining.toFixed(3)})`;
}
// menus.js
// ============================================================================
// ============================================================================
// Top-level menu containers
const menuContainerNode = $(".menus");
const menuMainNode = $(".menu--main");
const menuPauseNode = $(".menu--pause");
const menuScoreNode = $(".menu--score");
const finalScoreLblNode = $(".final-score-lbl");
const highScoreLblNode = $(".high-score-lbl");
function showMenu(node) {
node.classList.add("active");
}
function hideMenu(node) {
node.classList.remove("active");
}
function renderMenus() {
hideMenu(menuMainNode);
hideMenu(menuPauseNode);
hideMenu(menuScoreNode);
switch (state.menus.active) {
case MENU_MAIN:
showMenu(menuMainNode);
break;
case MENU_PAUSE:
showMenu(menuPauseNode);
break;
case MENU_SCORE:
finalScoreLblNode.textContent = formatNumber(state.game.score);
if (isNewHighScore()) {
highScoreLblNode.textContent = "New High Score!";
} else {
highScoreLblNode.textContent = `High Score: ${formatNumber(
getHighScore()
)}`;
}
showMenu(menuScoreNode);
break;
}
setHudVisibility(!isMenuVisible());
menuContainerNode.classList.toggle("has-active", isMenuVisible());
menuContainerNode.classList.toggle(
"interactive-mode",
isMenuVisible() && pointerIsDown
);
}
renderMenus();
////////////////////
// Button Actions //
////////////////////
// Main Menu
handleClick($(".play-normal-btn"), () => {
setGameMode(GAME_MODE_RANKED);
setActiveMenu(null);
resetGame();
});
handleClick($(".play-casual-btn"), () => {
setGameMode(GAME_MODE_CASUAL);
setActiveMenu(null);
resetGame();
});
// Pause Menu
handleClick($(".resume-btn"), () => resumeGame());
handleClick($(".menu-btn--pause"), () => setActiveMenu(MENU_MAIN));
// Score Menu
handleClick($(".play-again-btn"), () => {
setActiveMenu(null);
resetGame();
});
handleClick($(".menu-btn--score"), () => setActiveMenu(MENU_MAIN));
////////////////////
// Button Actions //
////////////////////
// Main Menu
handleClick($(".play-normal-btn"), () => {
setGameMode(GAME_MODE_RANKED);
setActiveMenu(null);
resetGame();
});
handleClick($(".play-casual-btn"), () => {
setGameMode(GAME_MODE_CASUAL);
setActiveMenu(null);
resetGame();
});
// Pause Menu
handleClick($(".resume-btn"), () => resumeGame());
handleClick($(".menu-btn--pause"), () => setActiveMenu(MENU_MAIN));
// Score Menu
handleClick($(".play-again-btn"), () => {
setActiveMenu(null);
resetGame();
});
handleClick($(".menu-btn--score"), () => setActiveMenu(MENU_MAIN));
// actions.js
// ============================================================================
// ============================================================================
//////////////////
// MENU ACTIONS //
//////////////////
function setActiveMenu(menu) {
state.menus.active = menu;
renderMenus();
}
/////////////////
// HUD ACTIONS //
/////////////////
function setScore(score) {
state.game.score = score;
renderScoreHud();
}
function incrementScore(inc) {
if (isInGame()) {
state.game.score += inc;
if (state.game.score < 0) {
state.game.score = 0;
}
renderScoreHud();
}
}
function setCubeCount(count) {
state.game.cubeCount = count;
renderScoreHud();
}
function incrementCubeCount(inc) {
if (isInGame()) {
state.game.cubeCount += inc;
renderScoreHud();
}
}
//////////////////
// GAME ACTIONS //
//////////////////
function setGameMode(mode) {
state.game.mode = mode;
}
function resetGame() {
resetAllTargets();
state.game.time = 0;
resetAllCooldowns();
setScore(0);
setCubeCount(0);
spawnTime = getSpawnDelay();
}
function pauseGame() {
isInGame() && setActiveMenu(MENU_PAUSE);
}
function resumeGame() {
isPaused() && setActiveMenu(null);
}
function endGame() {
handleCanvasPointerUp();
if (isNewHighScore()) {
setHighScore(state.game.score);
}
setActiveMenu(MENU_SCORE);
}
////////////////////////
// KEYBOARD SHORTCUTS //
////////////////////////
window.addEventListener("keydown", (event) => {
if (event.key === "p") {
isPaused() ? resumeGame() : pauseGame();
}
});
// tick.js
// ============================================================================
// ============================================================================
let spawnTime = 0;
const maxSpawnX = 450;
const pointerDelta = { x: 0, y: 0 };
const pointerDeltaScaled = { x: 0, y: 0 };
// Temp slowmo state. Should be relocated once this stabilizes.
const slowmoDuration = 1500;
let slowmoRemaining = 0;
let spawnExtra = 0;
const spawnExtraDelay = 300;
let targetSpeed = 1;
function tick(width, height, simTime, simSpeed, lag) {
PERF_START("frame");
PERF_START("tick");
state.game.time += simTime;
if (slowmoRemaining > 0) {
slowmoRemaining -= simTime;
if (slowmoRemaining < 0) {
slowmoRemaining = 0;
}
targetSpeed = pointerIsDown ? 0.075 : 0.3;
} else {
const menuPointerDown = isMenuVisible() && pointerIsDown;
targetSpeed = menuPointerDown ? 0.025 : 1;
}
renderSlowmoStatus(slowmoRemaining / slowmoDuration);
gameSpeed += ((targetSpeed - gameSpeed) / 22) * lag;
gameSpeed = clamp(gameSpeed, 0, 1);
const centerX = width / 2;
const centerY = height / 2;
const simAirDrag = 1 - airDrag * simSpeed;
const simAirDragSpark = 1 - airDragSpark * simSpeed;
// Pointer Tracking
// -------------------
// Compute speed and x/y deltas.
// There is also a "scaled" variant taking game speed into account. This serves two purposes:
// - Lag won't create large spikes in speed/deltas
// - In slow mo, speed is increased proportionately to match "reality". Without this boost,
// it feels like your actions are dampened in slow mo.
const forceMultiplier = 1 / (simSpeed * 0.75 + 0.25);
pointerDelta.x = 0;
pointerDelta.y = 0;
pointerDeltaScaled.x = 0;
pointerDeltaScaled.y = 0;
const lastPointer = touchPoints[touchPoints.length - 1];
if (pointerIsDown && lastPointer && !lastPointer.touchBreak) {
pointerDelta.x = pointerScene.x - lastPointer.x;
pointerDelta.y = pointerScene.y - lastPointer.y;
pointerDeltaScaled.x = pointerDelta.x * forceMultiplier;
pointerDeltaScaled.y = pointerDelta.y * forceMultiplier;
}
const pointerSpeed = Math.hypot(pointerDelta.x, pointerDelta.y);
const pointerSpeedScaled = pointerSpeed * forceMultiplier;
// Track points for later calculations, including drawing trail.
touchPoints.forEach((p) => (p.life -= simTime));
if (pointerIsDown) {
touchPoints.push({
x: pointerScene.x,
y: pointerScene.y,
life: touchPointLife,
});
}
while (touchPoints[0] && touchPoints[0].life <= 0) {
touchPoints.shift();
}
// Entity Manipulation
// --------------------
PERF_START("entities");
// Spawn targets
spawnTime -= simTime;
if (spawnTime <= 0) {
if (spawnExtra > 0) {
spawnExtra--;
spawnTime = spawnExtraDelay;
} else {
spawnTime = getSpawnDelay();
}
const target = getTarget();
const spawnRadius = Math.min(centerX * 0.8, maxSpawnX);
target.x = Math.random() * spawnRadius * 2 - spawnRadius;
target.y = centerY + targetHitRadius * 2;
target.z = Math.random() * targetRadius * 2 - targetRadius;
target.xD = Math.random() * ((target.x * -2) / 120);
target.yD = -20;
targets.push(target);
}
// Animate targets and remove when offscreen
const leftBound = -centerX + targetRadius;
const rightBound = centerX - targetRadius;
const ceiling = -centerY - 120;
const boundDamping = 0.4;
targetLoop: for (let i = targets.length - 1; i >= 0; i--) {
const target = targets[i];
target.x += target.xD * simSpeed;
target.y += target.yD * simSpeed;
if (target.y < ceiling) {
target.y = ceiling;
target.yD = 0;
}
if (target.x < leftBound) {
target.x = leftBound;
target.xD *= -boundDamping;
} else if (target.x > rightBound) {
target.x = rightBound;
target.xD *= -boundDamping;
}
if (target.z < backboardZ) {
target.z = backboardZ;
target.zD *= -boundDamping;
}
target.yD += gravity * simSpeed;
target.rotateX += target.rotateXD * simSpeed;
target.rotateY += target.rotateYD * simSpeed;
target.rotateZ += target.rotateZD * simSpeed;
target.transform();
target.project();
// Remove if offscreen
if (target.y > centerY + targetHitRadius * 2) {
targets.splice(i, 1);
returnTarget(target);
if (isInGame()) {
if (isCasualGame()) {
incrementScore(-25);
} else {
endGame();
}
}
continue;
}
// If pointer is moving really fast, we want to hittest multiple points along the path.
// We can't use scaled pointer speed to determine this, since we care about actual screen
// distance covered.
const hitTestCount = Math.ceil((pointerSpeed / targetRadius) * 2);
// Start loop at `1` and use `<=` check, so we skip 0% and end up at 100%.
// This omits the previous point position, and includes the most recent.
for (let ii = 1; ii <= hitTestCount; ii++) {
const percent = 1 - ii / hitTestCount;
const hitX = pointerScene.x - pointerDelta.x * percent;
const hitY = pointerScene.y - pointerDelta.y * percent;
const distance = Math.hypot(
hitX - target.projected.x,
hitY - target.projected.y
);
if (distance <= targetHitRadius) {
// Hit! (though we don't want to allow hits on multiple sequential frames)
if (!target.hit) {
target.hit = true;
target.xD += pointerDeltaScaled.x * hitDampening;
target.yD += pointerDeltaScaled.y * hitDampening;
target.rotateXD += pointerDeltaScaled.y * 0.001;
target.rotateYD += pointerDeltaScaled.x * 0.001;
const sparkSpeed = 7 + pointerSpeedScaled * 0.125;
if (pointerSpeedScaled > minPointerSpeed) {
target.health--;
incrementScore(10);
if (target.health <= 0) {
incrementCubeCount(1);
createBurst(target, forceMultiplier);
sparkBurst(hitX, hitY, 8, sparkSpeed);
if (target.wireframe) {
slowmoRemaining = slowmoDuration;
spawnTime = 0;
spawnExtra = 2;
}
targets.splice(i, 1);
returnTarget(target);
} else {
sparkBurst(hitX, hitY, 8, sparkSpeed);
glueShedSparks(target);
updateTargetHealth(target, 0);
}
} else {
incrementScore(5);
sparkBurst(hitX, hitY, 3, sparkSpeed);
}
}
// Break the current loop and continue the outer loop.
// This skips to processing the next target.
continue targetLoop;
}
}
// This code will only run if target hasn't been "hit".
target.hit = false;
}
// Animate fragments and remove when offscreen.
const fragBackboardZ = backboardZ + fragRadius;
// Allow fragments to move off-screen to sides for a while, since shadows are still visible.
const fragLeftBound = -width;
const fragRightBound = width;
for (let i = frags.length - 1; i >= 0; i--) {
const frag = frags[i];
frag.x += frag.xD * simSpeed;
frag.y += frag.yD * simSpeed;
frag.z += frag.zD * simSpeed;
frag.xD *= simAirDrag;
frag.yD *= simAirDrag;
frag.zD *= simAirDrag;
if (frag.y < ceiling) {
frag.y = ceiling;
frag.yD = 0;
}
if (frag.z < fragBackboardZ) {
frag.z = fragBackboardZ;
frag.zD *= -boundDamping;
}
frag.yD += gravity * simSpeed;
frag.rotateX += frag.rotateXD * simSpeed;
frag.rotateY += frag.rotateYD * simSpeed;
frag.rotateZ += frag.rotateZD * simSpeed;
frag.transform();
frag.project();
// Removal conditions
if (
// Bottom of screen
frag.projected.y > centerY + targetHitRadius ||
// Sides of screen
frag.projected.x < fragLeftBound ||
frag.projected.x > fragRightBound ||
// Too close to camera
frag.z > cameraFadeEndZ
) {
frags.splice(i, 1);
returnFrag(frag);
continue;
}
}
// 2D sparks
for (let i = sparks.length - 1; i >= 0; i--) {
const spark = sparks[i];
spark.life -= simTime;
if (spark.life <= 0) {
sparks.splice(i, 1);
returnSpark(spark);
continue;
}
spark.x += spark.xD * simSpeed;
spark.y += spark.yD * simSpeed;
spark.xD *= simAirDragSpark;
spark.yD *= simAirDragSpark;
spark.yD += gravity * simSpeed;
}
PERF_END("entities");
// 3D transforms
// -------------------
PERF_START("3D");
// Aggregate all scene vertices/polys
allVertices.length = 0;
allPolys.length = 0;
allShadowVertices.length = 0;
allShadowPolys.length = 0;
targets.forEach((entity) => {
allVertices.push(...entity.vertices);
allPolys.push(...entity.polys);
allShadowVertices.push(...entity.shadowVertices);
allShadowPolys.push(...entity.shadowPolys);
});
frags.forEach((entity) => {
allVertices.push(...entity.vertices);
allPolys.push(...entity.polys);
allShadowVertices.push(...entity.shadowVertices);
allShadowPolys.push(...entity.shadowPolys);
});
// Scene calculations/transformations
allPolys.forEach((p) => computePolyNormal(p, "normalWorld"));
allPolys.forEach(computePolyDepth);
allPolys.sort((a, b) => b.depth - a.depth);
// Perspective projection
allVertices.forEach(projectVertex);
allPolys.forEach((p) => computePolyNormal(p, "normalCamera"));
PERF_END("3D");
PERF_START("shadows");
// Rotate shadow vertices to light source perspective
transformVertices(
allShadowVertices,
allShadowVertices,
0,
0,
0,
TAU / 8,
0,
0,
1,
1,
1
);
allShadowPolys.forEach((p) => computePolyNormal(p, "normalWorld"));
const shadowDistanceMult = Math.hypot(1, 1);
const shadowVerticesLength = allShadowVertices.length;
for (let i = 0; i < shadowVerticesLength; i++) {
const distance = allVertices[i].z - backboardZ;
allShadowVertices[i].z -= shadowDistanceMult * distance;
}
transformVertices(
allShadowVertices,
allShadowVertices,
0,
0,
0,
-TAU / 8,
0,
0,
1,
1,
1
);
allShadowVertices.forEach(projectVertex);
PERF_END("shadows");
PERF_END("tick");
}
// draw.js
// ============================================================================
// ============================================================================
function draw(ctx, width, height, viewScale) {
PERF_START("draw");
const halfW = width / 2;
const halfH = height / 2;
// 3D Polys
// ---------------
ctx.lineJoin = "bevel";
PERF_START("drawShadows");
ctx.fillStyle = shadowColor;
ctx.strokeStyle = shadowColor;
allShadowPolys.forEach((p) => {
if (p.wireframe) {
ctx.lineWidth = 2;
ctx.beginPath();
const { vertices } = p;
const vCount = vertices.length;
const firstV = vertices[0];
ctx.moveTo(firstV.x, firstV.y);
for (let i = 1; i < vCount; i++) {
const v = vertices[i];
ctx.lineTo(v.x, v.y);
}
ctx.closePath();
ctx.stroke();
} else {
ctx.beginPath();
const { vertices } = p;
const vCount = vertices.length;
const firstV = vertices[0];
ctx.moveTo(firstV.x, firstV.y);
for (let i = 1; i < vCount; i++) {
const v = vertices[i];
ctx.lineTo(v.x, v.y);
}
ctx.closePath();
ctx.fill();
}
});
PERF_END("drawShadows");
PERF_START("drawPolys");
allPolys.forEach((p) => {
if (!p.wireframe && p.normalCamera.z < 0) return;
if (p.strokeWidth !== 0) {
ctx.lineWidth =
p.normalCamera.z < 0 ? p.strokeWidth * 0.5 : p.strokeWidth;
ctx.strokeStyle =
p.normalCamera.z < 0 ? p.strokeColorDark : p.strokeColor;
}
const { vertices } = p;
const lastV = vertices[vertices.length - 1];
const fadeOut = p.middle.z > cameraFadeStartZ;
if (!p.wireframe) {
const normalLight = p.normalWorld.y * 0.5 + p.normalWorld.z * -0.5;
const lightness =
normalLight > 0
? 0.1
: ((normalLight ** 32 - normalLight) / 2) * 0.9 + 0.1;
ctx.fillStyle = shadeColor(p.color, lightness);
}
// Fade out polys close to camera. `globalAlpha` must be reset later.
if (fadeOut) {
// If polygon gets really close to camera (outside `cameraFadeRange`) the alpha
// can go negative, which has the appearance of alpha = 1. So, we'll clamp it at 0.
ctx.globalAlpha = Math.max(
0,
1 - (p.middle.z - cameraFadeStartZ) / cameraFadeRange
);
}
ctx.beginPath();
ctx.moveTo(lastV.x, lastV.y);
for (let v of vertices) {
ctx.lineTo(v.x, v.y);
}
if (!p.wireframe) {
ctx.fill();
}
if (p.strokeWidth !== 0) {
ctx.stroke();
}
if (fadeOut) {
ctx.globalAlpha = 1;
}
});
PERF_END("drawPolys");
PERF_START("draw2D");
ctx.strokeStyle = sparkColor;
ctx.lineWidth = sparkThickness;
ctx.beginPath();
sparks.forEach((spark) => {
ctx.moveTo(spark.x, spark.y);
const scale = (spark.life / spark.maxLife) ** 0.5 * 1.5;
ctx.lineTo(spark.x - spark.xD * scale, spark.y - spark.yD * scale);
});
ctx.stroke();
// Touch Strokes
// ---------------
ctx.strokeStyle = touchTrailColor;
const touchPointCount = touchPoints.length;
for (let i = 1; i < touchPointCount; i++) {
const current = touchPoints[i];
const prev = touchPoints[i - 1];
if (current.touchBreak || prev.touchBreak) {
continue;
}
const scale = current.life / touchPointLife;
ctx.lineWidth = scale * touchTrailThickness;
ctx.beginPath();
ctx.moveTo(prev.x, prev.y);
ctx.lineTo(current.x, current.y);
ctx.stroke();
}
PERF_END("draw2D");
PERF_END("draw");
PERF_END("frame");
// Display performance updates.
PERF_UPDATE();
}
function setupCanvases() {
const ctx = canvas.getContext("2d");
// devicePixelRatio alias
const dpr = window.devicePixelRatio || 1;
// View will be scaled so objects appear sized similarly on all screen sizes.
let viewScale;
// Dimensions (taking viewScale into account!)
let width, height;
function handleResize() {
const w = window.innerWidth;
const h = window.innerHeight;
viewScale = h / 1000;
width = w / viewScale;
height = h / viewScale;
canvas.width = w * dpr;
canvas.height = h * dpr;
canvas.style.width = w + "px";
canvas.style.height = h + "px";
}
handleResize();
window.addEventListener("resize", handleResize);
let lastTimestamp = 0;
function frameHandler(timestamp) {
let frameTime = timestamp - lastTimestamp;
lastTimestamp = timestamp;
raf();
if (isPaused()) return;
if (frameTime < 0) {
frameTime = 17;
} else if (frameTime > 68) {
frameTime = 68;
}
const halfW = width / 2;
const halfH = height / 2;
pointerScene.x = pointerScreen.x / viewScale - halfW;
pointerScene.y = pointerScreen.y / viewScale - halfH;
const lag = frameTime / 16.6667;
const simTime = gameSpeed * frameTime;
const simSpeed = gameSpeed * lag;
tick(width, height, simTime, simSpeed, lag);
ctx.clearRect(0, 0, canvas.width, canvas.height);
const drawScale = dpr * viewScale;
ctx.scale(drawScale, drawScale);
ctx.translate(halfW, halfH);
draw(ctx, width, height, viewScale);
ctx.setTransform(1, 0, 0, 1, 0, 0);
}
const raf = () => requestAnimationFrame(frameHandler);
// Start loop
raf();
}
function handleCanvasPointerDown(x, y) {
if (!pointerIsDown) {
pointerIsDown = true;
pointerScreen.x = x;
pointerScreen.y = y;
// On when menus are open, point down/up toggles an interactive mode.
// We just need to rerender the menu system for it to respond.
if (isMenuVisible()) renderMenus();
}
}
function handleCanvasPointerUp() {
if (pointerIsDown) {
pointerIsDown = false;
touchPoints.push({
touchBreak: true,
life: touchPointLife,
});
// On when menus are open, point down/up toggles an interactive mode.
// We just need to rerender the menu system for it to respond.
if (isMenuVisible()) renderMenus();
}
}
function handleCanvasPointerMove(x, y) {
if (pointerIsDown) {
pointerScreen.x = x;
pointerScreen.y = y;
}
}
// Use pointer events if available, otherwise fallback to touch events (for iOS).
if ("PointerEvent" in window) {
canvas.addEventListener("pointerdown", (event) => {
event.isPrimary && handleCanvasPointerDown(event.clientX, event.clientY);
});
canvas.addEventListener("pointerup", (event) => {
event.isPrimary && handleCanvasPointerUp();
});
canvas.addEventListener("pointermove", (event) => {
event.isPrimary && handleCanvasPointerMove(event.clientX, event.clientY);
});
// We also need to know if the mouse leaves the page. For this game, it's best if that
// cancels a swipe, so essentially acts as a "mouseup" event.
document.body.addEventListener("mouseleave", handleCanvasPointerUp);
} else {
let activeTouchId = null;
canvas.addEventListener("touchstart", (event) => {
if (!pointerIsDown) {
const touch = event.changedTouches[0];
activeTouchId = touch.identifier;
handleCanvasPointerDown(touch.clientX, touch.clientY);
}
});
canvas.addEventListener("touchend", (event) => {
for (let touch of event.changedTouches) {
if (touch.identifier === activeTouchId) {
handleCanvasPointerUp();
break;
}
}
});
canvas.addEventListener(
"touchmove",
(event) => {
for (let touch of event.changedTouches) {
if (touch.identifier === activeTouchId) {
handleCanvasPointerMove(touch.clientX, touch.clientY);
event.preventDefault();
break;
}
}
},
{ passive: false }
);
}
setupCanvases();